On homogeneous spaces with finite anti-solvable stabilizers

نویسندگان

چکیده

We say that a group is anti-solvable if all of its composition factors are non-abelian. consider particular family finite groups containing the simple alternating for n≠6 and 26 sporadic groups. prove that, K perfect field X homogeneous space smooth algebraic K-group G with geometric stabilizers lying in this family, then dominated by G-torsor. In particular, G=SL n , such spaces have rational points.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Localization operators on homogeneous spaces

Let $G$ be a locally compact group, $H$ be a compact subgroup of $G$ and $varpi$ be a representation of the homogeneous space $G/H$ on a Hilbert space $mathcal H$. For $psi in L^p(G/H), 1leq p leqinfty$, and an admissible wavelet $zeta$ for $varpi$, we define the localization operator $L_{psi,zeta} $ on $mathcal H$ and we show that it is a bounded operator. Moreover, we prove that the localizat...

متن کامل

A classification of finite homogeneous semilinear spaces

A semilinear space S is homogeneous if, whenever the semilinear structures induced on two finite subsets S1 and S2 of S are isomorphic, there is at least one automorphism of S mapping S1 onto S2. We give a complete classification of all finite homogeneous semilinear spaces. Our theorem extends a result of Ronse on graphs and a result of Devillers and Doyen

متن کامل

Characteristic Free Measure Rigidity for the Action of Solvable Groups on Homogeneous Spaces

We classify measures on a homogeneous space which are invariant under a certain solvable subgroup and ergodic under its unipotent radical. Our treatment is independent of characteristic. As a result we get the first measure classification for the action of semisimple subgroups without any characteristic restriction.

متن کامل

Flows on Homogeneous Spaces

We present a new approach to metric Diophantine approximation on manifolds based on the correspondence between approximation properties of numbers and orbit properties of certain ows on homogeneous spaces. This approach yields a new proof of a conjecture of Mahler, originally settled by V. G. Sprind zuk in 1964. We also prove several related hypotheses of Baker and Sprind zuk formulated in 1970...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Comptes Rendus Mathematique

سال: 2022

ISSN: ['1631-073X', '1778-3569']

DOI: https://doi.org/10.5802/crmath.339